Talks and presentations

Regionalizing the Sea-level Budget Using a Neural Network Approach

May 23, 2022

Talk, EGU, Vienna, Austria

“Understanding the drivers of present-day sea-level change is vital for improving sea-level projections and for adaptation and mitigation plans against sea-level rise. Sea-level budget (SLB) studies focus on attributing the observed sea-level change to its different drivers (steric and barystatic changes). While the global mean SLB is closed, explaining the drivers of sea-level change on a finer spatial scale leads to large discrepancies. Recent studies have shown that closing the regional budget on a regular 1x1˚ grid is not possible due to limitations of the observations itself, but also due to the spatial patterns and variability of the underlying processes. Consequently, the regional budget has been mainly analyzed on a basin-wide scale.

Regional patterns of ocean mass sea-level change over the satellite altimetry era

April 19, 2021

Talk, EGU, Virtual

“Ocean mass variation is one of the main drivers of present-day sea-level change (SLC). Also known as barystatic SLC, those fluctuations are due to the melting of continental ice from glaciers and ice sheets, and variations in landwater storage. While a large number of studies have quantified the contribution of barystatic SLC to global mean SLC, fewer works have looked into how much ocean mass has contributed to regional SLC. Besides, most of the regional studies have focused only on the effect of one of the components (e.g., melt from Antarctica), or on the period and results of the GRACE satellite mission (since 2002). This work aims at providing a comprehensive analysis of global and regional barystatic SLC since 1993. For that, we collect a suite of estimates of the individual freshwater sources, namely the Antarctic and Greenland ice sheets, glaciers and terrestrial water storage. We then use them as input on the sea-level equation to obtain regional patters (fingerprints) of barystatic SLC, and validate our results by comparing the individual estimates with the values obtained from GRACE products. We finalize our analysis by looking into trend uncertainty patterns related to each contribution.”

Regional patterns of ocean mass sea-level change over the satellite altimetry era

May 04, 2020

Talk, EGU, Virtual

The steric component of sea-level change comprises variations in the temperature (thermosteric) and salinity (halosteric) of the oceans, which alter the water’s density, leading to volumetric variations of the water column. Although its importance is unarguable, throughout the literature there is a disagreement on how much the steric component actually contributes to sea-level change.